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A M A T H E M A T I C A L  M O D E L  O F  E X T R A C T I O N  W I T H  

A V A R I A B L E  M A S S - T R A N S F E R  C O E F F I C I E N T  

V. V. Beloborodov and B. A. Voronenko UDC 66.021.06:531.1 

Using the relationship between the sizes of particles and the characteristics of their layer, we obtain the 

dependence of the mass-transfer coefficient on time and concentration; the dependence is included in the 

third-kind boundary condition. Using this condition, we solve the boundary-value problem of extraction. 

Usually, problems of extraction are solved with a constant mass-transfer coefficient [ 1-10 ], whereas, in 

reality, when an extracting liquid flows through a material layer, the hydrodynamics varies over the height of the 

layer, and the mass-transfer coefficient is a variable quantity. The dependence of the mass-transfer coefficient on 

the most important factors (time, concentration) can be determined via the relationship between the size of particles 

and the geometric and hydrodynamic characteristics of the layer, specifically for a cylindrically-shaped one 

occurring in practice in connection with the wide use of such apparatuses as, for example, vertical-screw conveyers. 

The extracting liquid flows through a layer of particles from the bottom upwards; then, from rather general 

considerations we may assume that the mass-transfer coefficient changes as an exponential function of the height 

of the layer and the velocity of the extracting liquid changes as a parabolic function of the radius of the layer 

(apparatus). 

For a fixed point along the radius of the apparatus we can write 

fl (Z)Rx=cons t = flz=O,Rx=cons I exp ((2nzR + r)/Lz) . (1) 

In deriving Eq. (1) it is assumed that the spherical particles lie on one another, while their centers are 

located along one vertical axis. Other models of packing [11 ] can be described by introducing a corresponding 

coefficient. As z grows, the coefficient fl increases, since in this case the looseness (porosity) increases (there is a 
greater tendency toward caking of particles at the bottom and they are less washed away by the extracting liquid 

flow). Therefore the exponential in Eq. (1) has a plus sign. 

It is evident that 

2nre  = W (nx) (2) 

Since $ -- ~xn, then 

= w ( n x )  (a) 
n 

Vliq ( 4 )  
n =  

m V m a  t �9 

According to the statement of the problem, the liquid velocity is distributed parabolically and therefore 

W (Rx) = W (0) + B (Wn) (5) 
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Since the centers of the adjacent particles are located along one horizontal axis, then R x 
With allowance for Eqs. (2)-(5) we obtain from Eq. (1) 

fl (r)Rx=cons t = eflz=O,gx=cons t exp (Er /  F) 

= 2kx R. 

(6) 

o r  

fl (r)Rx=COnS t = a I exp (br).  (7) 

In Eq. (1) 2nzR + r <. Lz and therefore the value of fl(Z)Rx=const does not increase infinitely; it increases 
by a factor of e on one passage of the extracting liquid through the layer. When passing to the dependence of the 

mass-transfer  coefficient on time, i.e., to Eq. (7), we must take the first emergence of the extracting liquid from 

the layer as the beginning of the process (at this time all the particles of the layer come in contact with the extracting 

liquid), i.e., now ~(0)Rx=cons t = al (e times higher than at the entry into the layer). In the case of multiple 
(continuous) passage of liquid through the layer, Eq. (7) is inconsistent with physical concepts, since the mass- 

transfer coefficient cannot increase infinitely. It is evident that under  these conditions we may write the equation 

fl (r)Rx=cons t = a 1 + a 2 -- a 2 exp ( - b r )  = a - a 2 exp ( -  br) ,  (8)  

which corresponds to the physical picture: fl(r)Rx=cons t --, al, when r -,  0 and fl(r)Rx=const "-" al + a2, when r ~ oo; 

a 1 > 0, a2 > 0, where a2 is the mass-transfer  coefficient component determined by the change in the concentration 
of the extracting liquid in the course of the process; b -- const > 0. 

Thus,  the formulation of the problem for spherical particles can be written as follows: 

OC (r, r) = D (o2C(r '3)  2 0 C ( r , r ) )  (9) 
Or ( Or 2 + --r Or , O < r < R ,  r > O ;  

C( r ,  0) = C  0 = c o n s t ;  (lO) 

oc(o,r)=o; c(0,3)<oo; 0c(n,r) 
Or - Or - fl (QRx=c~ C (R, r) = O. 

The solution of the posed problem according to the procedure of [12 ] is 

o ( x ,  Fo)  = 
C (r, r) - C O 

CoPo :3n=0X~ A n [ ~ ( 1  - exp ( -  n Po Fo)) - 

- ~ ( 1 - e x p ( -  (1 + n ) ) P o F o  
rt 

n 
+ -~ ~ Bn, l sin (vr-f X) exp ( -  t PoFo) • 

rt=O l=1 

kl 
• ~ (1 - exp ( -  nl PoFo)) 

k2 ] 
(1 - exp ( -  (i + nO) PoFo)/ + 

1 + n l  A 

+ 

n = 0  l=0  m = l  
Cn,l, m sin (X / /z  2 + l 2 X) • 

x exp ( -  ~ 2  m + / )  Fo) f kl 2 
n--#m--l 

2 
(1 - exp ( -  (n - P,n - / ) )  Fo) - 

(11) 
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k2 2 ] (12) 
- 2 (1 - exp ( -  (1 + (n - / a m  - /)) PoFo)) . 

1 + ( n - / a m - / )  J 
Here X -- r / R ;  Fo = Dr~R2; Po -- bR2 /D;  kl = aR; k 2 = a2R;/a m are successive positive roots of the characteristic 

equation 

/~ (13) 
t a n / a =  1 - k  I ; 

(- k2)" a = 
r t  rt  

lq (1 - k  1 - ~ c t h V r k  -) 
k=l 

Bn,l = n 

II 
k=O 
k~l 

n 

( -  k2) n 1"-[ s i n r  k 
k=l 

[ -  ~[ l - k cos ~/ l --  k + ( 1  - k l )  sin ~l l -  k ] 

r l  

Dn.l, rn = sin/am I-I 
k=0 
k~l 

[_  ~ / / a 2 + l _ k  c o s ~ / / a 2 +  l - k  + (1 - k l )  sinX//a 2 + l - k  ] 
m 

Solution (12) is obtained for a mass-transfer  coefficient that changes exponentially and for an extracting 

liquid velocity that changes parabolically. The basic idea of the present work is the relationship between the size 

of particles and the characteristics of the layer. Therefore,  solutions of the extraction problem with other  laws for 

the dependence of the mass-transfer  coefficient and velocity would have been only modifications of the basic idea 

and would not have introduced fundamental  innovations. 

N O T A T I O N  

C, concentration; r, current radius of a particle; R, radius of a particle; Lz and L x, current height and 

radius of the layer (apparatus) ; Lz and R a, height of the layer and radius of the apparatus; nz, number  of particles 

up to the height z at R x  = const; 3, time; D, diffusion coefficien; fl, mass-transfer  coefficient; W ( R x ) ,  liquid velocity 

at the points Rx  = const; W(0), liquid velocity at Rx = 0; Tx, time of the liquid motion to the point Rx; n, number  

of passages of the liquid through the layer for the time z-; V~iq, volumetric flow rate of the liquid; Vmat, volumetric 
flow rate of the material; m, porosity of the material layer; kx, number  of particles over the radius of the layer 

(apparatus) up to the given point Rx, z; B ( W n ) ,  coefficient; a, a 1, a2, b, coefficients (see the text); l, number  of the 

term of the corresponding sum; E = [W(0) + 4B(Wo)(kXxR2/Rx)  ]mG; F = VliqpLz; al = eflz=O,Rx=const; b = E / F .  

R E F E R E N C E S  

1. V.V. Beloborodov, Basic Processes in Production of Oils [in Russian l, Moscow (1966). 

2. V.V. Beloborodov, B. A. Voronenko, and V. A. Dementiy, Tr. VNIIZh, Vyp. 28, 95-101 (1971). 

3. V.V. Beloborodov, V. A. Dementiy,  and B. A. Voronenko, Tr. VNIIZh, Vyp. 28, 102-108 (1971). 

681 



4. B.A. Voronenko and V. V. Beloborodov, Tr. VNIIZh, Vyp. 29, 66-69 (1972). 
5. K.N. Belonogov, Tr. Ivanovsk. Khim.-Tekhnol. Inst., 105-116; 124-127; 128-134; 140-144 (1958). 

6. V.V. Beloborodov and K. V. Malashikhin, Izv. VUZov, Pishch. Tekhnol., No. 4, 54-58 (1989). 
7. G.A.  Aksel'rud and V. M. Lysyanskii, Extraction. A Solid Body-Liquid System [in Russian], Leningrad 

(1974). 
8. P.G.  Romankov and M. P. Kurochkina, Extraction from Solid Materials [in Russian ], Leningrad (1983). 
9. S.P. Rudobashta, Mass Transfer in Systems with a Solid Phase [in Russian ], Moscow (1980). 

10. S.P. Rudobashta and 1~. M. Kartashov, Diffusion in Chemical-Technological Processes [in Russian ], Moscow 

(1993). 
11. L.S. Leibenzon, Motion of Natural Liquids and Gases in a Porous Medium [in Russian ], Moscow-Leningrad 

(1947). 
12. V.N.  Grevtsova, in: Problems of Heat- and Mass Transfer Theory, Vol. 8 [in Russian ], Minsk (1968), pp. 

164-176. 

682 


